Tidal Stretches Differently Regulate the Contractile and Cytoskeletal Elements in Intact Airways

نویسندگان

  • Erzsébet Bartolák-Suki
  • Adam S. LaPrad
  • Brian C. Harvey
  • Béla Suki
  • Kenneth R. Lutchen
چکیده

Recent reports suggest that tidal stretches do not cause significant and sustainable dilation of constricted intact airways ex vivo. To better understand the underlying mechanisms, we aimed to map the physiological stretch-induced molecular changes related to cytoskeletal (CSK) structure and contractile force generation through integrin receptors. Using ultrasound, we measured airway constriction in isolated intact airways during 90 minutes of static transmural pressure (Ptm) of 7.5 cmH2O or dynamic variations between Ptm of 5 and 10 cmH20 mimicking breathing. Integrin and focal adhesion kinase activity increased during Ptm oscillations which was further amplified during constriction. While Ptm oscillations reduced β-actin and F-actin formation implying lower CSK stiffness, it did not affect tubulin. However, constriction was amplified when the microtubule structure was disassembled. Without constriction, α-smooth muscle actin (ASMA) level was higher and smooth muscle myosin heavy chain 2 was lower during Ptm oscillations. Alternatively, during constriction, overall molecular motor activity was enhanced by Ptm oscillations, but ASMA level became lower. Thus, ASMA and motor protein levels change in opposite directions due to stretch and contraction maintaining similar airway constriction levels during static and dynamic Ptm. We conclude that physiological Ptm variations affect cellular processes in intact airways with constriction determined by the balance among contractile and CSK molecules and structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Length oscillation mimicking periodic individual deep inspirations during tidal breathing attenuates force recovery and adaptation in airway smooth muscle.

Airway smooth muscle (ASM) is able to generate maximal force under static conditions, and this isometric force can be maintained over a large length range due to length adaptation. The increased force at short muscle length could lead to excessive narrowing of the airways. Prolonged exposure of ASM to submaximal stimuli also increases the muscle's ability to generate force in a process called f...

متن کامل

Emergence of airway smooth muscle mechanical behavior through dynamic reorganization of contractile units and force transmission pathways.

Airway hyperresponsiveness (AHR) in asthma remains poorly understood despite significant research effort to elucidate relevant underlying mechanisms. In particular, a significant body of experimental work has focused on the effect of tidal fluctuations on airway smooth muscle (ASM) cells, tissues, lung slices, and whole airways to understand the bronchodilating effect of tidal breathing and dee...

متن کامل

Nonlinear compliance modulates dynamic bronchoconstriction in a multiscale airway model.

The role of breathing and deep inspirations (DI) in modulating airway hyperresponsiveness remains poorly understood. In particular, DIs are potent bronchodilators of constricted airways in nonasthmatic subjects but not in asthmatic subjects. Additionally, length fluctuations (mimicking DIs) have been shown to reduce mean contractile force when applied to airway smooth muscle (ASM) cells and tis...

متن کامل

Endothelium-Dependent Attenuating Effect of Trigonella foenum-graecum on the Contractile Vascular Reactivity of Diabetic Rats

The present study was undertaken to determine whether two-month treatment of streptozotocin (STZ)-diabetic rats with aqueous leaf extract of Trigonella foenum-graecum (TFG 200 mg/kg i.p.) could improve thoracic aortic responsiveness and to evaluate its endothelium dependency. For this purpose, vascular responses to KCl and noradrenaline (NA) were measured. Diabetic state significantly increased...

متن کامل

Relaxation of activated airway smooth muscle: relative potency of isoproterenol vs. tidal stretch.

Both isoproterenol and tidal fluctuations of muscle length inhibit active force development in activated airway smooth muscle. In this study, we show that length fluctuations in the range of amplitudes expected during quiet tidal breathing produce force inhibition that is equipotent with high concentrations of isoproterenol. Active force fell to 50% of its isometric value when the amplitude of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014